

CE/EMC TEST REPORT

For

Hunan Honggao Electronic Technology Co., Ltd

Product Name:	Oximeter
Brand Name:	Dikang
Model Number:	AB80, AB88, A2, A3, YM101, YM102, YM201, YM203, YM301, CH101H1, C101A2, C101A3, C101B1, CMS50D, CMS50DL
Prepared For:	Hunan Honggao Electronic Technology Co., Ltd
Address:	Building No.5, Tenghui business park, Economic Development Zone, Nanxian County, Yiyang city, Hunan Province, China
Prepared By:	Shenzhen Yacetong Testing Technology Services Co., Ltd.
Address:	Room 5009 Baode Industry Center, Baode Industry Center, Lixin South Road, Huaide Community, Fuyong, Baoan District, Shenzhen, China
Report No.:	ATT2020SZ0410027E

TABLE OF CONTENT

Test Report Declaration	Page
1. GENERAL INFORMATION	5
1.1 Description of Device (EUT)	5
1.2 Tested System Details	5
1.3 Test Uncertainty	5
2. TEST INSTRUMENT USED	6
3. CONDUCTED EMISSION AT THE MAINS TERMINAL	LS TEST9
3.1 Block Diagram Of Test Setup	9
3.2 Test Standard	9
3.3 Power Line Conducted Emission Limit	
3.4 EUT Configuration on Test	10
3.5 Operating Condition of EUT	10
3.6 Test Procedure	10
3.7 Test Result	10
4. RADIATION EMISSION TEST	11
4.1 Block Diagram of Test Setup	11
4.2 Test Standard	11
4.3 Radiation Limit	11
4.4 EUT Configuration on Test	12
4.5 Operating Condition of EUT	
4.6 Test Procedure	
4.7 Test Result	12
5. HARMONIC CURRENT EMISSION TEST	15
5.1 Block Diagram of Test Setup	15
5.2 Test Standard	15
5.3 Operating Condition of EUT	15
5.4 Test Procedure	15
5.5 Test Results	
6. VOLTAGE FLUCTUATIONS & FLICKER TEST	16
6.1 Block Diagram of Test Setup	16
6.2 Test Standard	16
6.3 Operating Condition of EUT	16
6.4 Test Procedure	16
6.5 Test Results	16
7. IMMUNITY TEST OF GENERAL THE PERFORMANO	CE CRITERIA17
8. ELECTROSTATIC DISCHARGE IMMUNITY TEST	18
8.1 Block Diagram of Test Setup	
8.2 Test Standard	
8.3 Severity Levels and Performance Criterion	18
8.4 Test Procedure	19

13.5

8.5 Te	est Results	19
9. RF	FIELD STRENGTH SUSCEPTIBILITY TEST	20
9.1 Bl	ock Diagram of Test Setup	20
9.2 Te	est Standard	20
9.3 Se	everity Levels and Performance Criterion	20
9.4 Te	est Procedure	21
9.5 Te	est Results	21
10. EI	LECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	22
10.1	Block Diagram of EUT Test Setup	22
10.2	Test Standard	
10.3	Severity Levels and Performance Criterion	22
10.4	Test Procedure	23
10.5	Test Results	23
11. SI	URGE TEST	24
11.1	Block Diagram of EUT Test Setup	24
11.2	Test Standard	
11.3	Severity Levels and Performance Criterion	24
11.4	Test Procedure	24
11.5	Test Result	24
12. IN	IJECTED CURRENTS SUSCEPTIBILITY TEST	25
12.1	Block Diagram of EUT Test Setup	25
12.2	Test Standard	25
12.3	Severity Levels and Performance Criterion	25
12.4	Test Procedure	26
12.5	Test Result	26
13. V	OLTAGE DIPS AND INTERRUPTIONS TEST	27
13.1	Block Diagram of EUT Test Setup	27
13.2	Test Standard	
13.3	Severity Levels and Performance Criterion	27
13.4	Test Procedure	27

Test Result ______27

14. EUT PHOTOGRAPHS......28

Report No. ATT2020SZ0410027E

- Page 4 of 32 -

TEST RESULT CERTIFICATION

Applicant : Hunan Honggao Electronic Technology Co,Ltd

Address Building No.5, Tenghui business park, Economic Development Zone,

Nanxian County, Yiyang city, Hunan Province, China

Manufacturer : Hunan Honggao Electronic Technology Co,Ltd

Address : No. 89, Tengfeng Avenue, Baoan District, Shenzhen

EUT : Oximeter

Brand Name: : Dikang

Model Number : AB80, AB88, A2, A3, YM101, YM102, YM201, YM203, YM301,

CH101H1, C101A2, C101A3, C101B1, CMS50D, CMS50DL

Date of Receipt: November 2, 2020

Test Date : November 2-5, 2020

Date of Report : November 5, 2020

Test Result:

The equipment under test was found to be compliance with the

requirements of the standards applied.

Test Procedure Used:

EMI : EN 55014-1:2017

EN 61000-3-2:2014, EN 61000-3-3:2013

EMS : EN 55014-2:2015

EN 61000-4-2:2009, EN 61000-4-3:2006+A1:2008+A2:2010,

EN 61000-4-4:2012, EN 61000-4-5:2014, EN 61000-4-6:2014, EN 61000-4-11:2004

Prepared by(Engineer): Helen Lin

Reviewer(Supervisor): Peter Peng

Approved(Manager): Jim He

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen Yacetong Testing Technology Services Co., Ltd.

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Oximeter

Brand Name : Dikang

Model Number : AB80, AB88, A2, A3, YM101, YM102, YM201, YM203, YM301,

CH101H1, C101A2, C101A3, C101B1, CMS50D, CMS50DL

Model Difference : Only model name and appearance are different

Power Supply : DC 3V

Work Frequency : Below 15MHz

Note: AB80 was selected as the test model and the data's have been recorded in this report.

1.2 Tested System Details

None.

1.3 Test Uncertainty

Conducted Emission Uncertainty: ±2.57dB

Radiated Emission Uncertainty : ±4.51dB

2. TEST INSTRUMENT USED

For Conducted Emission at the mains terminals Test

Conducted Emission Test (854 site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
843 Shielded Room	ChengYu	843 Room	843	Aug. 20, 2020	Aug. 19, 2021
EMI Receiver	R&S	ESCI	101421	Aug. 20, 2020	Aug. 19, 2021
LISN	SCHWARZBECK	NSLK8127	812779	Aug. 20, 2020	Aug. 19, 2021

For Disturbance Power Test

Conducted Emission Test (854 site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
EMI Receiver	R&S	ESCI	101421	Aug. 20, 2020	Aug. 19, 2021
Power Clamp	LUTHI	MDS21	4293	Aug. 20, 2020	Aug. 19, 2021
Attenuator	R&S	ESH3-Z2	DL021E	Aug. 20, 2020	Aug. 19, 2021
843 Cable 2#	FUJIKURA	843C1#	002	Aug. 20, 2020	Aug. 19, 2021

For Radiated Emission Test

Radiation Emission Test (966 chamber)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Aug. 20, 2020	Aug. 19, 2021	
Spectrum Analyzer	Agilent	E4407B	MY45109572	Aug. 20, 2020	Aug. 19, 2021	
Amplifier	Schwarzbeck	BBV9743	9743-119	Aug. 20, 2020	Aug. 19, 2021	
Amplifier	Schwarzbeck	BBV9718	9718-270	Aug. 20, 2020	Aug. 19, 2021	
Log-periodic Antenna	Schwarzbeck	VULB9160	VULB9160-33 69	Aug. 20, 2020	Aug. 19, 2021	
EMI Receiver	R&S	ESCI	101421	Aug. 20, 2020	Aug. 19, 2021	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1275	Aug. 20, 2020	Aug. 19, 2021	
966 Cable 1#	CHENGYU	966	004	Aug. 20, 2020	Aug. 19, 2021	
966 Cable 2#	CHENGYU	966	003	Aug. 20, 2020	Aug. 19, 2021	

For Harmonic & Flicker Test

	For Harmonic / Flicker Test (EMI site)						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Harmonic / Flicker Analyzer	KIKUSUI	KHA1000	VA002445	Aug. 20, 2020	Aug. 19, 2021		
AC Power Supply	KIKUSUI	PCR4000M	UK001879	Aug. 20, 2020	Aug. 19, 2021		
Line Impedance network	KIKUSUI	LIN1020JF	UL001611	Aug. 20, 2020	Aug. 19, 2021		

For Electrostatic Discharge Immunity Test

For Electrostatic Discharge Immunity Test (EMS site)					
Equipment Manufacturer Model# Serial# Last Cal. Next					Next Cal.
ESD Tester	KIKISUI	KES4201A	UH002321	Aug. 20, 2020	Aug. 19, 2021

For RF Field Strength Susceptibility Test(SMQ)

For RF Field Strength Susceptibility Test (SMQ site)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Signal Generator	HP	8648A	3625U00573	Aug. 20, 2020	Aug. 19, 2021		
Amplifier	A&R	500A100	17034	Aug. 20, 2020	Aug. 19, 2021		
Amplifier	A&R	100W/1000M1	17028	Aug. 20, 2020	Aug. 19, 2021		
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	Aug. 20, 2020	Aug. 19, 2021		
Isotropic Field Probe	A&R	FP2000	16755	Aug. 20, 2020	Aug. 19, 2021		
Antenna	EMCO	3108	9507-2534	Aug. 20, 2020	Aug. 19, 2021		
Log-periodic Antenna	A&R	AT1080	16812	Aug. 20, 2020	Aug. 19, 2021		

For Electrical Fast Transient /Burst Immunity Test

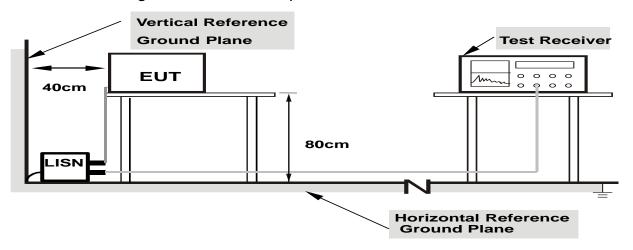
For Electrical Fast Transient/Burst Immunity Test (EMS site)					
Equipment Manufacturer Model# Serial# Last Cal. Next Cal					Next Cal.
Burst Tester	Prima	EFT61004AG	PR14054467	Aug. 20, 2020	Aug. 19, 2021
Coupling Clamp	Prima	EFT61004AG	DL009E	Aug. 20, 2020	Aug. 19, 2021

For Surge Test

For Electrical Fast Transient/Burst Immunity Test (EMS site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Burst Tester	Prima	EFT61004AG	PR14054467	Aug. 20, 2020	Aug. 19, 2021

For Injected Currents Susceptibility Test

For Injected Currents Susceptibility Test (EMS site)						
Equipment Manufacturer Model# Serial# Last Cal. Next (
C/S Test System	SCHLODER	CDG600	126B1281	Aug. 20, 2020	Aug. 19, 2021	
CDN	SCHLODER	CDN-M2+3	A2210320/20 15	Aug. 20, 2020	Aug. 19, 2021	
Injection Clamp	SCHLOBER	EMCL-20	132A1214/20 15	Aug. 20, 2020	Aug. 19, 2021	


For Voltage Dips Interruptions Test

For Voltage Dips Interruptions Test (EMS site)								
Equipment	Equipment Manufacturer Model# Serial# Last Cal. Next Cal.							
Dips Tester	Prima	DRP61011A G	PR14086284	Aug. 20, 2020	Aug. 19, 2021			

3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1 Block Diagram Of Test Setup

Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.2 Test Standard

EN 55014-1

3.3 Power Line Conducted Emission Limit

Frequency	Limits dB(μV)			
MHz	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66 ~ 56*	59 ~ 46*		
0.50 ~ 5.00	56	46		
5.00 ~ 30.00	60	50		

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4 EUT Configuration on Test

The following equipment's are installed on conducted emission test to meet EN 55014-1 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

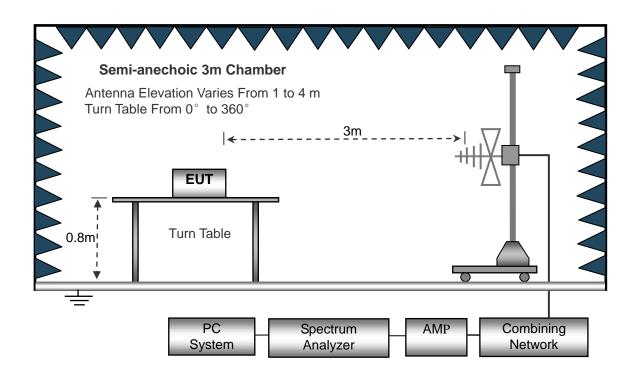
3.5 Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

3.6 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **EN 55014-1** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.


The frequency range from 150 KHz to 30 MHz is investigated.

3.7 Test Result

4. RADIATION EMISSION TEST

4.1 Block Diagram of Test Setup

4.2 Test Standard

EN 55014-1

4.3 Radiation Limit

Freq	uency	Distance	Field Strengths Limits
MHz		(Meters)	dB(μV)/m
30 ~	~ 230	3	40.0
230 ~	~ 1000	3	47.0

Remark:

- (1) Emission level $(dB(\mu V)/m) = 20 \log Emission level (\mu V/m)$
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4 EUT Configuration on Test

The EN 55014-1 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

4.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

4.6 Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN 55014-1 on radiated emission test.

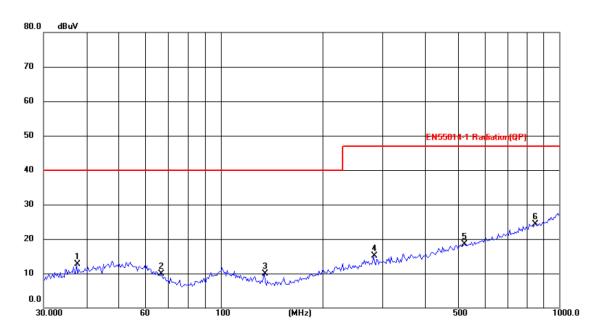
The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz.

The frequency range from 30MHz to 1000MHz is checked.

4.7 Test Result

PASS

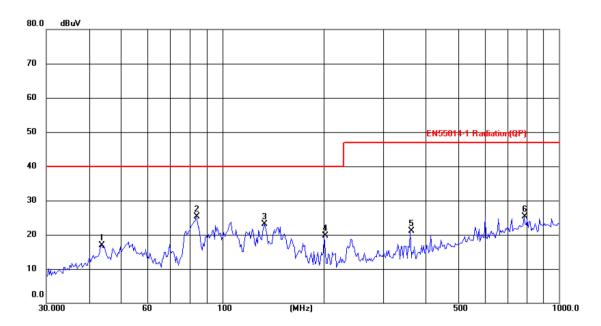
Please refer to the following page.



Radiation Emission Test Data

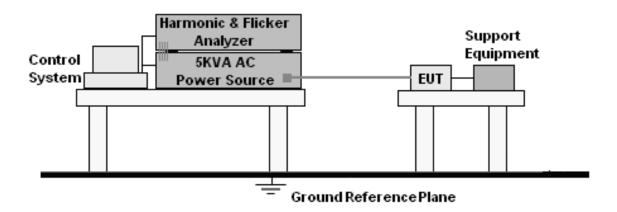
Temperature: 24.5 °C Relative Humidity: 54%

Pressure: 1009hPa Phase: Horizontal


Test Voltage: DC 3V Test Mode: ON Mode

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	37.5479	27.57	-14.94	12.63	40.00	-27.37	peak	
2	66.7325	26.59	-16.66	9.93	40.00	-30.07	peak	
3	134.5592	28.54	-18.54	10.00	40.00	-30.00	peak	
4	282.9852	28.18	-13.17	15.01	47.00	-31.99	peak	
5	524.5541	26.67	-8.21	18.46	47.00	-28.54	peak	
6 *	851.0353	25.94	-1.69	24.25	47.00	-22.75	peak	

Radiation Emission Test Data					
Temperature:	24.5 ℃	Relative Humidity:	54%		
Pressure:	1009hPa	Phase :	Vertical		
Test Voltage :	DC 3V	Test Mode:	ON Mode		



	MHz	dBuV				Margin		
		abav	dB	dBuV	dBuV	dB	Detector	Comment
1	43.8119	30.81	-13.88	16.93	40.00	-23.07	peak	
2 *	83.5222	43.40	-18.18	25.22	40.00	-14.78	peak	
3	133.6188	41.20	-18.11	23.09	40.00	-16.91	peak	
4	200.6881	35.22	-15.61	19.61	40.00	-20.39	peak	
5	361.7139	32.67	-11.63	21.04	47.00	-25.96	peak	
6	787.8513	27.98	-2.75	25.23	47.00	-21.77	peak	

5. HARMONIC CURRENT EMISSION TEST

5.1 Block Diagram of Test Setup

5.2 Test Standard

EN 61000-3-2

5.3 Operating Condition of EUT

Setup the EUT as shown in Section 5.1.

Turn on the power of all equipments.

Let the EUT work in test mode and test it.

5.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

5.5 Test Results

6. VOLTAGE FLUCTUATIONS & FLICKER TEST

6.1 Block Diagram of Test Setup

Same as Section 5.1.

6.2 Test Standard

EN 61000-3-3

6.3 Operating Condition of EUT

Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

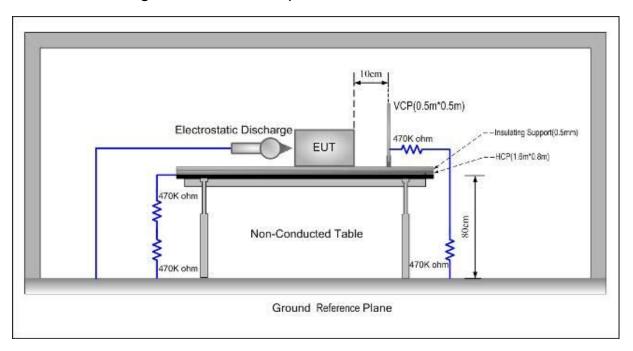
Flicker Test Limit

Test items	Limits
Pst	1.0
dc	3.3%
Tmax	4.0%
dt	Not exceed 3.3% for 500ms

6.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

6.5 Test Results


7. IMMUNITY TEST OF GENERAL THE PERFORMANCE CRITERIA

Product Standard	EN 55014-2
CRITERION A	The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended
CRITERION B	The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
CRITERION C	Temporary loss of function is allowed, provided the function is self- recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

8. ELECTROSTATIC DISCHARGE IMMUNITY TEST

8.1 Block Diagram of Test Setup

8.2 Test Standard

EN 55014-2, EN 61000-4-2

Severity Level: 3 / Air Discharge:±8KV Level: 2 / Contact Discharge:±4KV

8.3 Severity Levels and Performance Criterion

Severity level

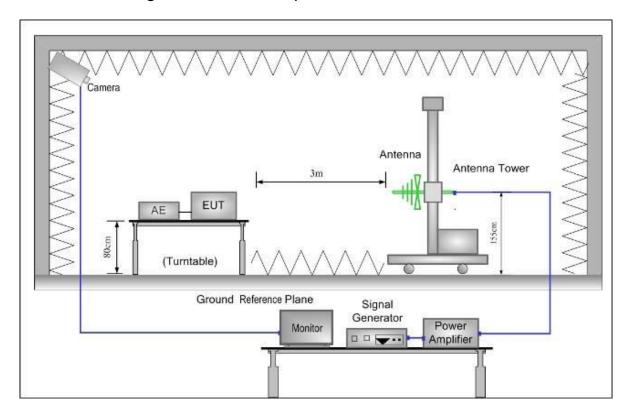
Coronty love		
Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
Х	Special	Special

Performance criterion: B

8.4 Test Procedure

- a. Electrostatic discharges were applied only to those points and surfaces of the Product that are accessible to users during normal operation.
- b. The test was performed with at least ten single discharges on the pre-selected points in the most sensitive polarity.
- c. The time interval between two successive single discharges was at least 1 second.
- d. The ESD generator was held perpendicularly to the surface to which the discharge was applied and the return cable was at least 0.2 meters from the Product.
- e. Contact discharges were applied to the non-insulating coating, with the pointed tip of the generator penetrating the coating and contacting the conducting substrate.
- f. Air discharges were applied with the round discharge tip of the discharge electrode approaching the Product as fast as possible (without causing mechanical damage) to touch the Product. After each discharge, the ESD generator was removed from the Product and re-triggered for a new single discharge. The test was repeated until all discharges were complete.
- g. At least ten single discharges (in the most sensitive polarity) were applied to the Horizontal Coupling Plane at points on each side of the Product. The ESD generator was positioned vertically at a distance of 0.1 meters from the Product with the discharge electrode touching the HCP.
- h. At least ten single discharges (in the most sensitive polarity) were applied to the center of one vertical edge of the Vertical Coupling Plane in sufficiently different positions that the four faces of the Product were completely illuminated. The VCP (dimensions 0.5m x 0.5m) was placed vertically to and 0.1 meters from the Product.

8.5 Test Results


PASS Please refer to the following data.

	Electrostatic Discharge Test Data							
Temperature: 25.1℃				Humidity:		55%	55%	
Power Sup	ply:	DC 3V		Test Mode:		ON Mode		
Discharge Method Discharge Position Volta					Min. No. of Discharge per polarity (Each Point)	Required Level	Result	
_	Conductive Surfaces		4		10	В	Pass	
Contact Discharge	Indirect	Discharge HCP	4		10	В	Pass	
• · · · · · · · · · · · · · · · · · · ·		Discharge VCP	4		10	В	Pass	
Air Discharge			8		10	В	Pass	
Note: N/A	·					·		

9. RF FIELD STRENGTH SUSCEPTIBILITY TEST

9.1 Block Diagram of Test Setup

9.2 Test Standard

EN 55014-2, EN 61000-4-3 Severity Level 2, 3V / m

9.3 Severity Levels and Performance Criterion

Severity level

Level	Field Strength V/m
1.	1
2.	3
3.	10
X.	Special

Performance criterion: A

9.4 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

All the scanning conditions are as follows:

Condition of Test Remarks

Fielded Strength 3 V/m (Severity Level 2)

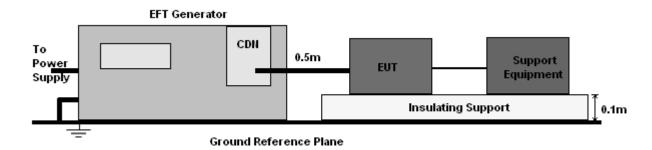
Radiated Signal Modulated
Scanning Frequency 80 – 1000 MHz
Dwell time of radiated 0.0015 decade/s

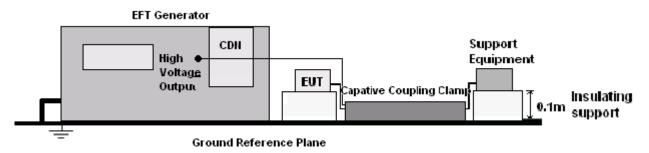
Waiting Time 1 Sec.

9.5 Test Results

PASS

Please refer to the following data.


r lease refer to the following data.							
R/S Test Data							
Temperature:	25.1℃		Humidity:		55%		
Power Supply :	DC 3V		Test Mode:		ON Mode		
Criterion:	А	Ş	Steps		1 %		
Frequency (MHz)	Position		Strength //m)	Re	equired Level	Result	
80 - 1000	Front, Right, Back, Left		3		А	Pass	
Note: N/A	,	•			,		


10. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

10.1 Block Diagram of EUT Test Setup

For input a.c. / d.c. power port:

For signal lines and control lines:

10.2 Test Standard

EN 55014-2, EN 61000-4-4

10.3 Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Severity Level:

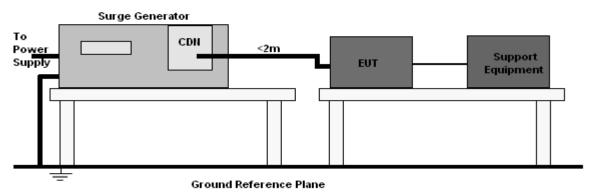
Open Circuit Output Test Voltage ±10%				
Level	On power ports	On I/O(Input/Output)		
		Signal data and control ports		
1.	0.5KV	0.25KV		
2.	1KV	0.5KV		
3.	2KV	1KV		
4.	4KV	2KV		
X.	Special	Special		

Performance criterion: B

10.4 Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

For input and output AC power ports:


The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

10.5 Test Results

11. SURGE TEST

11.1 Block Diagram of EUT Test Setup

11.2 Test Standard

EN 55014-2, EN61000-4-5

11.3 Severity Levels and Performance Criterion

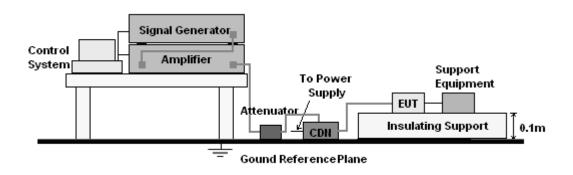
Severity Level: Line to Line, Level 2 at 1KV; Severity Level: Line to Earth, Level 3 at 2KV.

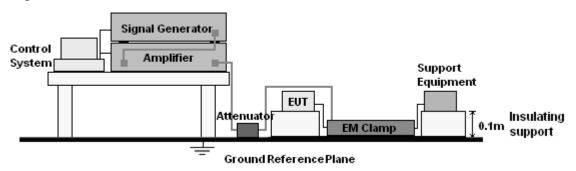
Severity Level	Open-Circuit Test Voltage (KV)	
1.	0.5	
2.	1.0	
3.	2.0	
4.	4.0	
X.	Special	

Performance criterion: B

11.4 Test Procedure

- 1) Set up the EUT and test generator as shown on section 10.1
- 2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
 - 4) Different phase angles are done individually.
- 5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- 6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.


11.5 Test Result


12. INJECTED CURRENTS SUSCEPTIBILITY TEST

12.1 Block Diagram of EUT Test Setup

For input a.c. / d.c. power port:

For signal lines and control lines:

12.2 Test Standard

EN 55014-2, EN61000-4-6

12.3 Severity Levels and Performance Criterion

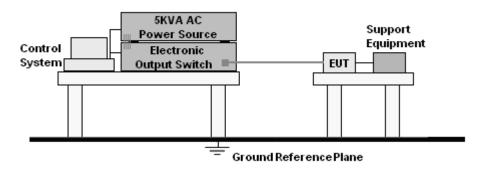
Severity Level 2: 3V(rms), 150KHz \sim 80MHz

Severity Level:

Level	Field Strength V	
1.	1	
2.	3	
3.	10	
X.	Special	

Performance criterion: A

12.4 Test Procedure


- 1) Set up the EUT, CDN and test generator as shown on section 12.1
- 2) Let EUT work in test mode and measure.
- 3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
 - 4) The disturbance signal described below is injected to EUT through CDN.
- 5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave
- 7) The rate of sweep shall not exceed 1.5×10⁻³ decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.5 Test Result

13. VOLTAGE DIPS AND INTERRUPTIONS TEST

13.1 Block Diagram of EUT Test Setup

13.2 Test Standard

EN 55014-2, EN61000-4-11

13.3 Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

- ✓ Voltage Dips.
- ✓ Voltage Interruptions.

Environmental Phenomena	Test Specification	Units	Performance Criterion
Voltage Dips	70 25	% Reduction period	С
voltage Dips	40 10	% Reduction period	С
Voltage Interruptions	0 0.5	% Reduction period	С

13.4 Test Procedure

Set up the EUT and test generator as shown on section 13.1

The interruption is introduced at selected phase angles with specified duration.

There is a 3mins minimum interval between each test event.

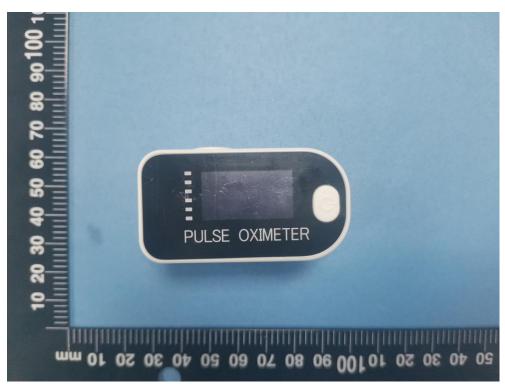
After each test a full functional check is performed before the next test.

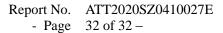
Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.

Record any degradation of performance.

13.5 Test Result

14. EUT PHOTOGRAPHS





Mm Of 02 05 04 03 05 07 08 09 00101 05 05 04 05

Mm Of 02 05 04 03 03 07 08 09 00101 05 05 04 05

******** END OF REPORT *******